Styrofoam and Polystyrene
Polystyrene is an aromatic polymer made from the aromatic monomer styrene, a liquid hydrocarbon that is commercially manufactured from petroleum by the chemical industry. Polystyrene is a thermoplastic substance, normally existing as a solid at room temperature, but melting if heated (for molding or extrusion), and becoming solid again when cooling off.
Polystyrene was accidentally discovered in 1839 by Eduard Simon, an apothecary in Berlin. From storax, the resin of Liquidambar orientalis, he distilled an oily substance, a monomer which he named styrol. Several days later Simon found that the styrol had thickened, presumably from oxidation, into a jelly he dubbed styrol oxide (“Styroloxydâ€). By 1845 English chemist John Blyth and German chemist August Wilhelm von Hofmann showed that the same transformation of styrol took place in the absence of oxygen. They called their substance metastyrol. Analysis later showed that it was chemically identical to Styroloxyd. In 1866 Marcelin Berthelot correctly identified the formation of metastyrol from styrol as a polymerization process. About 80 years went by before it was realized that heating styrol starts a chain reaction which produces macromolecules, following the thesis of German organic chemist Hermann Staudinger (1881–1965). This eventually led to the substance receiving its present name, polystyrene. The I.G. Farben company began manufacturing polystyrene in Ludwigshafen, Germany, about 1931, hoping it would be a suitable replacement for die cast zinc in many applications. Success was achieved when they developed a reactor vessel that extruded polystyrene through a heated tube and cutter, producing polystyrene in pellet form.
Pure solid polystyrene is a colorless, hard plastic with limited flexibility. It can be cast into molds with fine detail. Polystyrene can be transparent or can be made to take on various colors. It is economical and is used for producing plastic model assembly kits, license plate frames, plastic cutlery, CD “jewel†cases, and many other objects where a fairly rigid, economical plastic is desired.
Solid foam
Polystyrene’s most common use, however, is as expanded polystyrene (EPS). Expanded polystyrene is produced from a mixture of about 90-95% polystyrene and 5-10% gaseous blowing agent, most commonly pentane or carbon dioxide.[citation needed]
The solid plastic is expanded into a foam through the use of heat, usually steam. Extruded polystyrene (XPS), which is different from expanded polystyrene (EPS), is commonly known by the trade name Styrofoam. The voids filled with trapped air give it low thermal conductivity. This makes it ideal as a construction material and it is therefore sometimes used in structural insulated panel building systems. It is also used as insulation in building structures, as molded packing material for cushioning fragile equipment inside boxes, as packing “peanutsâ€, as non-weight-bearing architectural structures (such as pillars), and also in crafts and model building, particularly architectural models. Foamed between two sheets of paper, it makes a more-uniform substitute for corrugated cardboard, tradenamed Fome-Cor. A more unexpected use for the material is as a lightweight fill for embankments in the civil engineering industry.
9-52
2007
978 views
views
0
comments